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Summary

Bose–Einstein Condensates (BECs) are superfluid systems consisting of bosonic atoms
that have been cooled and condensed into a single, macroscopic ground state (Pethick &
Smith, 2008, Fetter (2009)). These systems can be created in an experimental laboratory,
and allow for the the exploration of many interesting physical phenomenon, such as su-
perfluid turbulence (Roche & Barenghi, 2008,White, Anderson, & Bagnato (2014),Navon,
Gaunt, Smith, & Hadzibabic (2016)), chaotic dynamics (Gardiner, 2002,Kyriakopoulos,
Koukouloyannis, Skokos, & Kevrekidis (2014), Zhang (2017)), and as analogues of other
quantum systems (Dalibard, Gerbier, Juzeli|unas, & Öhberg, 2011). Numerical simula-
tions of BECs allow for new discoveries that directly mimic what can be seen in experi-
ments and are thus highly valuable for fundamental research. In practice, the dynamics
of BEC systems can often be found by solving the non-linear Schrödinger equation known
as the Gross–Pitaevskii Equation (GPE),
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where Ψ(x, t) is the one-dimensional many-body wavefunction of the quantum system,
m is the atomic mass, V (r) is a potential to trap the atomic system, g = 4πℏ2as

m is a
coupling factor, and as is the scattering length of the atomic species. Here, the GPE
is shown in one dimension, but it can easily be extended to two or three dimensions.
Though there are many methods to solve the GPE, one of the most straightforward is
the split-operator method, which has previously been accelerated with GPU devices (Ruf,
Bauke, & Keitel, 2009,Bauke & Keitel (2011)); however, there are no generalized software
packages available using this method on GPU devices that allow for user-configurable
simulations and a variety of different system types. Even so, there are several software
packages designed to simulate BECs with other methods, including GPELab (Antoine &
Duboscq, 2014) the Massively Parallel Trotter-Suzuki Solver (Wittek & Cucchietti, 2013),
and XMDS (Dennis, Hope, & Johnsson, 2013).

GPUE is a GPU-based Gross-Pitaevskii Equation solver via the split-operator method
for superfluid simulations of both linear and non-linear Schrödinger equations, with an
emphasis on Bose–Einstein Condensates with vortex dynamics in 2 and 3 dimensions.
GPUE provides a fast, robust, and accessible method to simulate superfluid physics for
fundamental research in the area and has been used to simulate and manipulate large
vortex lattices in two dimensions (O’Riordan, White, & Busch, 2016, O’Riordan & Busch
(2016)), along with ongoing studies on vortex turbulence in two dimensions and vortex
structures in three dimensions.
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For these purposes, GPUE provides a number of unique features: 1. Dynamic field gener-
ation for trapping potentials and other variables on the GPU device. 2. Vortex tracking in
2D and vortex highlighting in 3D. 3. Configurable gauge fields for the generation of arti-
ficial magnetic fields and corresponding vortex distributions (Dalibard et al., 2011,Ghosh
& Sachdeva (2014)). 4. Vortex manipulation via direct control of the wavefunction phase
(Dobrek et al., 1999).

All of these features enable GPUE to simulate a wide variety of linear and non-linear
(BEC) dynamics of quantum systems. The above features enable highly configurable
physical system parameters, and allow for the simulation of state-of-the-art system dy-
namics. GPUE additionally features a highly performant numerical solver implementa-
tion, with performance greater than other available suites (“Comparing three numerical
solvers of the gross-pitaevskii equation,” n.d., O’Riordan (2017)). All GPUE features
and functionalities have been described in further detail in the documentation (Schloss &
O’Riordan, n.d.).
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